This document contains a description of functions
and extensions for graphic and console applications
working with OTC Terminal software.

Terminal GUI
Terminal Console
V.2.4

Programmers
manual

© OTC S.A., 2008

Table of contents

V.

INTrOdUCTION ... eee e 7
Extending the functionality of applications.................cc.ooo... 8

Using the application interface
Remote procedure call (RPC)

Using the application interface in xHarbour application.................. 11
Remote procedure call (RPC) in xHarbour applications 11
Application interface functions (TAPI) ..c.covviiiiiiiiiiiiiiiienns 13
1. TApPIASYyncRPCcocciieiie

2. TApiCheckConnected
3. TAPIGELAPIVEISION ... aeas
4. TAPIGETCHENTIDIN ...t ettt
5. TApiGetExpirationDate.........16
6. TApiGetFileFromTerminal .17
7. TApiGetLastError18
8. TAPIGETLASISIVEITON ... ettt ettt aeaeaae 19
[IR Y o TT€T=3 d =T o I 4 01 =1 o o] GO P 19
10. TApiGetRemotelPAddr20
11. TApiGetRemotelPPort..........20
12. TApiGetSrvOSVer................20
R T 7Y o] [=Y g 010 1O 1Y PP 21
14, TAPIGEIUSEINAMEttt eaeanes 21
15. TApiGetTrmVersion22
16. TApiHwndToNetld23
17. TApiHwndToRemotedNetld...23
18. TAPIINILANZE ... e 24
19, TAPINIANZEA. et aeaaas 25
20. TApiMemGilobalAlloc............25
21. TApiMemGlobalFree.............26
22. TApiNetldToHwnd26
23. TAPIPULFIleTOTEermMinNalcooeieii e eaeas 27
24. TAPIRAISEFINAIEITONt 28
25. TApiRemoteFreelLibrary........29
26. TApiRemoteLoadLibraryEx.... ..30
27. TApiRemotePrintFile
28. TAPISENAUPAALES. ... ettt aaeas

b2 TR 7 2Y o TS Y= D o3 I o 0

30. TApiSyncRPC
31. TApiSyncRPC_VSR
32. TApiTerminalMode

gte.exe extension interface functions (GteApi)................... 38

Terminal GUI/Console — programmers manual

VI.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

GteApiCheckConnected
GteApiGetApiVersion
GteApiGetGteVersion
GteAPIGELSIVINTO ... e
GteApiHwndToNetld
GteApilnitialize
GteApilnitialized
GteApiMemGlobalAlloc
GteAPIMEMGIODAIFIEE e
GteAPINETIATOHWNA ... e e eas
GteApiRaiseFinalErrorc.........

GteApiSetConsoleEventMask

Application interface xHarbour functions (THbApi)............... 46

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

THDAPIGELCHENTDIN e
THbApilnitialize..............

THbApilnitialized

THbApiIRPCInitialized
THbApIRPCEXxtInitialized
THDBAPISHUTAOWN
THbApiTerminalMode ... 50
TrmAppOS
TrmDiscTm ..
LI 0L
TrmGetFile
TrmGetPrty .
LI 1 S0 IS
TrmPrCancl
TrmPrClose
TrmPrFile
TrmPrList
TrmPrOpen
I8 01 1 S
TrmPrPutFI
LI 0812 5 T0 T o] 1 0| S 56
TrmPutFile
LI 1015 1= X 1/ 57
LI 0153740 F= U p TS 57
LI T IC= 1 TS
TrmTrmRPC
TrmTSBegin
LI 0 125 =1 T
I8 015 S
LILE 1218 oL F= L PPN

Migration of xHarbour applications to Terminal GUI environment

61

Terminal GUI/Console — programmers manual

The te32.eXe MIgrationo
The application mMigrationccoiiiii i

Terminal GUI/Console — programmers manual

. Introduction

The main task of Terminal GUI and Terminal Console software is to allow a
comfortable and effective use of dedicated business applications in terminal mode.
Many businesses either own the source codes of the transaction systems they use, or
work closely together with the developers and providers of those systems. This is why
Terminal GUI/Console is outfitted with a set of interfaces and libraries which make it
possible to further integrate the applications with the Terminal environment. Taking
advantage of those features makes it easy to fix problems that cannot be resolved or
are poorly resolved in any other way.

Terminal GUI/Console — programmers manual 7

Il. Extending the functionality of
applications

Terminal GUI enables launching of existing applications without introducing any
changes to them. In some cases an extension of application capabilities is
recommended through better integration with the Terminal environment. An extension
of capabilities for applications working in terminal mode is accomplished by using
additional Terminal functionality accessible through the application interface. The
application interface allows calls to two classes of functions:

1. built-in functions,
2. users functions attached on the terminal side (RPC).

Using the application interface

The application interface consists of the gtrmapi.dll library containing functions that
offer access to extended functionality of the Terminal. The Gtrmapi.dll library is
written in C. It exports (allows external access to) all interface functions. Functions
contained in the library can be made accessible to applications in two ways:

1. By static appending of the gtrmapi.lib library at the stage of application linking.
In this case the gtrmapi.dll library is automatically loaded into memory as the
application is started. The gtrmapi.lib library does not contain any static
references to Terminal functions and variables. Thus, the applications linked to it
can also be executed in non-terminal mode. A call of the
TApi Initialize()function attaches the library to the Terminal or returns an
error if the application works in non-terminal mode.

2. By manual loading of the library into memory using the LoadLibrary()
function and drawing the interface function addresses using
GetProcAddress(). Also in this case it is necessary to call the
TApi Initialize()function before the application starts using the interface.

8 Terminal GUI/Console — programmers manual

The names of the interface functions of the application start with the prefix TApi...
If the application is written in C or C++, a header gtrmapi.h containing all necessary
function declarations has to be included. For applications written in other languages
other methods of declaration and importing of the interface functions can be used. It is
important to maintain appropriate types of parameters (compatible with gtrmapi.h)
and appropriate convention of the function call (cdecl). The drawing below
illustrates components of the application process executed in terminal mode with
loaded gtrmapi.dll library. The arrows show how the call of the interface function is
done. In some cases (such as a remote procedure call) it is necessary to call the gte.exe
process running on the terminal as illustrated by the dashed arrow.

/ Application process \\

" Terminal | 4 [

code | :"EE"E”‘ 7
(cnetlib.dif)

N—————
Application ﬁ
code
f—————

Interface
E> (gtrmapi.dil)
_— J
An example of the application which uses the described application interface is
testcapi.exe.

A detailed description of the application interface functions can be found in chapter
111, page 13.

Remote procedure call (RPC)

In the Terminal GUI environment it is possible to create DLL libraries containing user
functions and to attach such libraries to the gte.exe process being run at the terminal.
Properly prepared functions can be called from the application using one of the
following functions: TApiSyncRPC(), TApiSyncRPC_VSR()

or TApiAsyncRPC(). As a consequence, some tasks can be executed entirely on the
terminal. This can be helpful for instance for the handling of a non-standard
identification method on the side of the terminal or for effective handling of a fiscal
printer attached to the terminal.

Terminal GUI/Console — programmers manual 9

The parameters and call convention of the functions, which will be called using the
RPC scheme, must comply with special requirements. An example DLL library
containing functions called via RPC is gteext.dll. An example of a call of a function
contained in the library can be found in the application testcapi.exe. DLL libraries
containing RPC functions are loaded to gte.exe address space from the application
level using TApiRemoteLoadLibraryEx(). DLL libraries loaded in this manner
have access to certain functions of gte.exe via the extension interface implemented by
the gteapi.dll library. This library is necessary only when the user defined extension
library (DLL) is to use the gte.exe functions. Names of the extension interface
functions start with the prefix GteApi... , their declarations can be found in the
gteapi.h header file. The gteapi.dll library can be attached to the extension library
statically by linking the gteapi.lib library or dynamically by explicitly calling the
LoadLibrary() function from the code initializing the extension library.

/ Application process \ / gte.exe process \
. ™ '@ -) r * ™
Terminal A gte.exe
code E.m.[\rb /==l interface
(cnetiib.dll) | T 1 7| (gteapidil)
Apmﬁm | | gte.exe code ‘.L:,.-.
RPC
Interface ED extensions
E> {grmrapl di) (gteext.dil)
b 7 >

The figure shows the application process on the server and the gte.exe process
executed on the terminal. Arrows illustrate calls between respective elements of the
processes during a remote procedure call (RPC). In this case gteext.dll calls additional
functions of gte.exe, thus the plot includes also a loaded gteapi.dll library. Since such
calls are optional the corresponding arrows are dashed. The gteext.dll library which
contains user extension functions can be called otherwise. Moreover, user extensions
can be located in a number of independent DLL libraries. Each of those libraries has
to be loaded before use by the TApiRemoteLoadLibraryEx()call .

10 Terminal GUI/Console — programmers manual

Using the application interface in xHarbour
application

In order to facilitate the use of the application interface from the xHarbour language
level we have created the ghrbapi.lib library. It contains xHarbour functions that call
functions from the gtrmapi.dll library (wrappers). Apart from wrappers to interface
functions, ghrbapi.lib contains also functions providing backward compatibility with
OTC Terminal functions, such as TrmTrmRPC(), TrmPutFile(),
TrmFIPrint(), and others. Implementation of older functions makes the migration
of applications to the new Terminal GUI environment much easier.

An example xHarbour application, which takes advantage of the application interface,
is the program testhbapi.exe.

A detailed description of xHarbour functions contained in the ghrbapi.lib library can
be found in chapter V, page 48.

Remote procedure call (RPC) in xHarbour
applications

The use of remote procedure call from the xHarbour application level has been
simplified by introducing the ghrbapi.lib library which can be linked into the
applications. The library contains the TrmTrmRPC()function and allows to create
extension libraries in the xHarbour language.

An additional extension library gtehrb.dll has been created to allow direct RPC call of
xHarbour functions. It features a special mode of procedure call required for the
xHarbour language. Both standard xHarbour functions and procedures included in
harbour.dll as well as users functions/procedures contained in a DLL library can be
called using the TrmTrmRPC()function. An example of an extension library written
in xHarbour is the gtehrbext.dll library, an example of its use can be found in
application testhbapi.exe.

The figure below presents an xHarbour application process on the server and a
gte.exe process running on a terminal. The arrows illustrate calls between respective
elements of the processes during a remote procedure call (RPC) of an xHarbour
procedure from the xHarbour level. It can be noted that the extension code from the
users library (gtehrbext.dll) is called via the standard extension library gtehrb.dll. In

Terminal GUI/Console — programmers manual 11

case of a users procedure call, gtehrb.dll calls to the gtehrbext.dll. In case of a
standard function call (e.g. SQRT), gtehrb.dll makes a call to harbour.dll (dashed
arrow). Either for a standard or users function call, the harbour.dll library has to be
present as the runtime environment. The gtehrbext.dll library is not required if only
standard functions contained in harbour.dll are to be called. Declaration of alternative
names for harbour.dll and gtehrbext.dll is possible at the initialization of the RPC
environment for xHarbour (THbApi Initialize(.T.)function). Only one
extension library containing xHarbour code is allowed.

/ Application code \ / gte.exe process \
| Teminal | | N [1 | geexe | [
code |[Cnatvonsy <:| interface Harbour.dil
(cnetib.di) | 1 _(gteapial) | |)
1
w5 || o D
(ghrbapi.dll) i &
it [RPC | xHarbour RPC!
extensions ED extensions
Lr: {gtrmaptall) 3 (gteext.dll) (gtehrbext.l) |
 — T 7

12 Terminal GUI/Console — programmers manual

Ill. Application interface functions (TApi)

The available application interface functions are described below in alphabetical
order. The names of the functions start with the TApi... prefix. The functions are
contained in the gtrmapi.dl 1 library. An import library gtrmapi.lib is available.
Function prototypes and all required types and constants are defined in the gtrmapi.h
header file. All text parameters are passed to/from interface functions as UNICODE.
The function interface has to be initialized before use by calling
TApilnitialize(). The following functions are exceptions and can be called
before the interface initialization:

v TApilnitialized()
v TApiTerminalMode()
v' TApiGetApiVersion()

A TAP1_SYSERR code returned by any of the interface functions means that a
system error occurred during its execution. Depending on the function, the error could
have occurred on the server or terminal. The error code is drawn from the system by
function GetLastError () and can be read by the interface user using one of the
three functions:

v TApiGetLastError()
v' TApiGetLastSrvError()
v' TApiGetLastTrmError()

1. TApiAsyncRPC

Syntax

int TApiAsyncRPC(HREMMODULE hRemoteModule,
WCHAR *pFunName,
void *pCallData,
int callDataSize);

Terminal GUI/Console — programmers manual 13

Parameters

v" hRemoteModule - handle of the remote DLL library obtained from
function TApiRemoteLoadLibraryEx().

v pFunName - unicode name of the called DLL library function

v' pCal IData - pointer to data which will be sent to the function or
NULL.

v' cal IDataSi ze - size (in bytes) of the data pointed by pCal IData or
0, if pCallData == NULL.

Result

Function returns TAP1_SUCCESS in case of success or one of the error codes:

v" TAPI_NOTCONN - no network connection to the terminal
v' TAP1_BADPARAMS - bad parameters of the call

Description

The function allows asynchronous call of a users function that resides on the
terminal and is appended to gte.exe as a DLL library. Before the call the library
containing the function has to be loaded in the gte.exe address space by calling
TApiRemoteLoadLibraryEx().

An asynchronous call sends to gte.exe the command to call the function with
given parameters and return to the calling application immediately without
waiting for completion of the function. Thus, when calling a users function using
TApiAsyncRPC()one does not obtain return information from the function.
The return of TAPI_SUCCESS means only that the command to call the
function has been sent to gte.exe.

Functions called using TApiAsyncRPC()have to be properly exported from a
DLL library and declared along with a call type cdecl. The returned type and
types of the parameters have to be consistent with the ASYNCRPCFUN type
defined in gtrmapi.h. The header of the function not including the export
directive and the call convention should be as follows:

void MyAsyncRPCFun(void *pCallData,
int callDataSize);

14

Terminal GUI/Console — programmers manual

An example of an asynchronously called users function is the function
UserAsyncRPCBeepCal Iback()from gteext.dll library. An example of the
call of that function is given in program testcapi.exe.

TApiCheckConnected

Syntax
int TApiCheckConnected(void);

Result

The function returns 1 if there is a connection between the application and
gte.exe or O if there is no connection.

Description

The function verifies if there is a connection between the application (the
process) calling the function and the corresponding gte.exe

TApiGetApiVersion

Syntax
int TApiGetApiVersion(GTRMVERSION *pApiVer);

Parameters

v" pApiVer - pointer to GTRMVERSION structure. This is where the result
of the function is to be stored.

Result
The function fills the GTRMVERSION structure and returns O.

Description

The function returns in the GTRMVERSION structure information on the
interface, that is the gtrmapi.dll library version. The version should agree within
the first four digits with the version of the used Terminal. If this is not the case,
the API initialization using TApi Initialize() will fail.

Terminal GUI/Console — programmers manual 15

TApiGetClientDir

Syntax
wchar_t * TApiGetClientDir(int dirType);

Result
The function returns a pointer to the name of the directory (path) on the terminal
side or NULL in case of an error.

Description

The function allows to get the name of the directory (path) specified by the
dirType parameter on the terminal. At this time the following directories are
being handled:

e TAPI_DIRTYPE_GTE (1) —directory of the gte.exe program.

The returned pointer points at the dynamically allocated memory block which
should be released after use by calling the TApiMemGlobalFree()function.

TApiGetExpirationDate

Syntax
int TApiGetExpirationDate(void);

Result

The function returns the date of expiry of the evaluation version of the Terminal
server or O if it is a production version. Bits 16-31 contain the year, bits 8-15 the
month, and bits 0-7 the day of the expiry date.

Description

The function serves to check whether the application works under control of an
evaluation version of the Terminal server and what is the date of expiry of that
version. This information can be used for instance to issue a reminder about the
end of evaluation and the required purchase of a production version of the
software.

16

Terminal GUI/Console — programmers manual

TApiGetFileFromTerminal

Syntax

int TApiGetFileFromTerminal(WCHAR *pSrvFileName,
WCHAR *pTrmFileName,
REMFILEERROR *pFIError,
DWORD flags);

Parameters

v" pSrvFileName - unicode file name on the server, which is to be used
to save the file transferred from the terminal.

v' pTrmFileName - unicode file name of the file that is to be transferred
from the terminal.

v" pFIError - pointer to REMFILEERROR structure in which additional
information will be saved in case of an error. If NULL is given no
additional diagnostics will be available. The field pFIError->error
contains a value identical with the value returned by the function. The
field pFIError->nbytes contains information about the number of
bytes of the file transferred.

v flags - additional flags concerning the file transfer.

The flag TAP1_F_FILEOVERWRITE means that the result file is to be
overwritten in case if it already exists. No TAPI_F_FILEOVERWRITE
flag means that the existance of the result file will constitute an error and
the transfer will not take place.

Result

The function returns TAPI_SUCCESS if the transfer has been successfull or one
of the following error codes:

v" TAP1_NOTCONN - no connection to the terminal (gte.exe).
v' TAPI_BADPARAMS - bad parameters, e.g. one of the required file
names is missing.

Terminal GUI/Console — programmers manual 17

v' TAPI_SYSERR - a system error has occured.
Fields pFIError->lastSrvSysError and
pFIError->lastTrmSysError contain information about the type
of the error returned by the function GetLastError () of the Windows
system on the server and on the terminal.

Description

The function allows to transfer from the terminal a file named pTrmFi leName
and to save it on the server using pSrvFi leName as the file name. The name
of the file on the server should be given as seen by the server system, the name
of the file on the terminal should be as seen by the terminal system.

In case the TAPI_SYSERR error one of the following functions:
GetLastError(), GetLastSrvError() or GetLastTrmError() can
be used to obtain additional information about the error.

TApiGetLastError

Syntax
DWORD TApiGetLastError(void);

Result

The function returns the code of the last system error which occured on the
terminal or, if there was no error on the terminal, the code of the last error on the
server. O is returned if there were no errors.

Description

If an error code TAPI_SYSERR was received as a result of an interface function
call, the TApiGetLastError() function will return the system error code
obtained from GetLastError (). The function will return the error code for
an error which occurred on both the terminal or the server. If errors have
occurred on both systems the terminal error code will be returned.

18

Terminal GUI/Console — programmers manual

TApiGetLastSrvError

Syntax
DWORD TApiGetLastSrvError(void);

Result

The function returns the error code of the last system error which occurred on the
server or O.

Description

If a TAP1_SYSERR error code was received as a consequence of an interface
function call and the system error occurred on the server, the
TApiGetLastSrvError() function will return the error code obtained
from GetLastError(). The function returns O if there was no error on
server.

TApiGetLastTrmError

Syntax
DWORD TApiGetLastTrmError(void);

Result

The function returns the error code of the last system error which occurred on the
terminal or O.

Description

If a TAP1_SYSERR error code was received as a consequence of an interface
function call and the system error occurred on the terminal, the
TApiGetLastTrmError() function will return the error code obtained
from GetLastError(). The function returns O if there was no error on the
terminal.

Terminal GUI/Console — programmers manual 19

10.

11.

12.

TApiGetRemotelPAddr

Syntax
unsigned TApiGetRemotelPAddr(void);

Result

The function returns the IP address of the terminal or NAT implementing router
which provides routing to the terminal computer. Upper eight bits of the result
contain the most significant part of the IP address, etc.

Description

The function allows to obtain the IP address of the terminal.

TApiGetRemotelPPort

Syntax
unsigned TApiGetRemotelPPort(void);
Result

The function returns the port number of the IP connection on the terminal side.

Description

The function allows to obtain the number of the IP port created by gte.exe on the
terminal side of the connection to communicate with the application.

TApiGetSrvOSVer

Syntax
int TApiGetSrvOSVer(TAPI_OSVERSIONINFO *pOSVIinfo);

Parameters

v' pOSVInTfo - pointer to TAP1_OSVERSIONINFO structure which is
used to save information about the version of the operating system of the
server obtained from the GetVersionEx() Windows function.

20

Terminal GUI/Console — programmers manual

13.

14.

Result

The function returns TAP1_SUCCESS or TAPI_NOTCONN if there is no
connection to the terminal.

Description

The function allows reading of information which identifies the version of the
operating system of the server.

TApiGetTrmOSVer

Syntax
int TApiGetTrmOSVer(TAPI_OSVERSIONINFO *pOSVInfo);

Parameters

v" pOSVInfo - pointer to TAPI_OSVERSIONINFO structure which is
used to save information about the version of the operating system of the
terminal obtained from the GetVersionEx() Windows function.

Result
The function returns TAP1_SUCCESS or TAP1_NOTCONN if there is no
connection to the terminal.

Description

The function allows reading of information which identifies the version of the
operating system of the terminal.

TApiGetUserName

Syntax
int TApiGetUserName(WCHAR *pUserName);

Parameters

v' pUserName - pointer to the buffer which can hold
TAP1_MAXUSERNAME of UNICODE characters (of the

Terminal GUI/Console — programmers manual 21

sizeof(wchar_t) size). In case of success, the username of the
Terminal server user, who has launched the application, is saved to the
buffer with a zero appended at its end.

Result

The function returns TAPI_SUCCESS for success or one of the following error
message:

v" TAP1_NOTCONN - no network connection to the terminal,
v' TAPI_BADPARAMS - wrong call parameter, for instance
pUserName == NULL.

Description

The function allows the reading of the username of the Terminal server user who

has launched the application.

15. TApiGetTrmVersion
Syntax
int TApiGetTrmVersion(GTRMVERSION *pCallerVer,
GTRMVERSION *pCnetlibver);
Parameters
v' pCallerVer -reserved —should always be NULL.
v" pCnetlibVer - pointer to GTRMVERSION structure which will be
used to save the result.
Result
The function returns TAP1_SUCCESS.
Description
The function allows the reading of the version of cnetlib.dll library which is
used be the application. This version is in accordance with the version of the
used Terminal server.
22 Terminal GUI/Console — programmers manual

16.

17.

TApiHwndToNetld

Syntax
int TApiHwndToNetld(HWND hWnd);

Parameters

v' hWnd - handle of the application window.

Result

Network identifier of the window or O.

Description

The function allows the converting of the application window handle into its
network identifier. The network identifier can be passed to a function executed
on the terminal and converted into a corresponding system window on the
terminal using the GteApiNetldToHwnd()function. The function returns O
if hwnd is a window handle which does not have a direct counterpart on the
terminal side.

TApiHwndToRemotedNetld

Syntax
int TApiHwndToRemotedNetld(HWND hWnd);

Parameters

v' hWnd - handle of the application window.

Result

Network identifier of the window or its parent or O.

Description

The function allows the converting of the application window handle into its
network identifier. The network identifier can be passed to a function executed
on the terminal and converted into a corresponding system window on the
terminal using the GteApiNetldToHwnd()function. Handles of windows run

Terminal GUI/Console — programmers manual 23

directly on the terminal (top level) are converted into the network identifiers of
those windows. Handles of windows which do not have direct counterparts on
the terminal are converted into the identifiers of the top level windows whose
child is the hWnd window.

18. TApilnitialize
Syntax
int TApilnitialize(void);
Result
The function returns TAP1_SUCCESS or one of the error codes:
v' TAPI1_NOCNETL IB - the cnetlib.dll library was not found — most
probably the application process was not launched in the terminal mode.
v' TAPI_BADAPIVERSION - the first four digits of the application
interface version (gtrmapi.dll) do not correspond to the first four digits of
the Terminal software version (cnetlib.dll). Please verify if correct DLL
libraries have been copied.
v' TAPI_CANTIMPORTFUN - the address of one of the API functions
within cnetlib.dll can not be imported.
Description
The function initializes internal structures of the application interface contained
in gtrmapi.dll. During initialization functions of gtrmapi.dll are linked to the
auxiliary functions contained in cnetlib.dll. The interface should be initialized
before the first call of the API functions with the exception of three functions
which can be called before API initialization:
v TApilnitialized()
v TApiTerminalMode()
v TApiGetApiVersion()
24 Terminal GUI/Console — programmers manual

19.

20.

TApilnitialized

Syntax

int TApilnitialized(void);

Result

The function returns 1 if the application interface has already been successfully
initialized using TApi Initialize() or O if this is not the case.
Description

The function can be used to verify at any time if the application interface has
been initialized and the API functions can be called.

TApiMemGlobalAlloc

Syntax
void *TApiMemGlobalAlloc(unsigned size);

Parameters

v size - size of the memory block that is to be allocated.

Result

The function returns the pointer to the allocated memory block of the size size
or NULL if the memory can not be allocated.

Description

The function allows dynamical allocation of memory for the application. The
allocated memory block is initialized by setting it to zero. The memory allocated
using the function TApiMemGlobalAlloc() must be released using the
TApiMemGlobalFree()function.

Terminal GUI/Console — programmers manual 25

21. TApiMemGlobalFree
Syntax
void TApiMemGlobalFree(void *ptr);
Parameters
v’ ptr - pointer to the memory block allocated using the
TApiMemGlobalAl loc() function or obtained from the
TApiSyncRPC_VSR() function.
Description
The function releases memory dynamically allocated by
TApiMemGlobalAlloc(). If the function TApiSyncRPC_VSR() returned
a non-zero block size, this memory block must also be released using the
described function.
22. TApiNetldToHwnd
Syntax
HWND TApiNetldToHwnd(WNDNETID netid);
Parameters
v' netid - network identifier of a window obtained from the function
TApiHwndToNetld(), TApiHwndToRemotedNetld() or
GteApiHwndToNetld().
Result
The handle of the Windows window or NULL.
Description
The function converts the network identifier of a window into the corresponding
window of the Windows system. The network identifier of a window will be in
most cases transferred to an application from RPC functions of the extension
libraries attached to gte.exe. The RPC function can convert on the terminal the
actual handle of the Windows system window into the network identifier using
26 Terminal GUI/Console — programmers manual

23.

GteApiHwndToNetld() and return it to the application. The application can
find the window on the server which corresponds to the terminal window, by
converting the network identifier into the server window handle using the
described function. The function returns NULL if the Windows window
described by the network identifier does not exist anymore.

TApiPutFileToTerminal

Syntax

int TApiPutFileToTerminal(WCHAR *pSrvFileName,

WCHAR *pTrmFileName,
REMFILEERROR *pFIlError,
DWORD flags);

Parameters

v

v

v

Result

pSrvFileName — unicode name of the file on the server that is to be
sent to the terminal.

pTrmFi leName — unicode name of the file on the terminal that is to be
used to save the file transferred from the server.

pFIError — pointer to REMF ILEERROR structure in which additional
information will be saved in case of an error. If NULL is given no error
diagnostics will be available. The value returned in the pFIError-
>ervror field is identical with the value returned by the function. The
number of bytes of the file transferred is returned in the pFIError-
>nbytes field.

Flags - additional flags concerning the file transfer. The flag
TAPI_F_FILEOVERWRITE means that the destination file is to be
overwritten if it exists. If the TAP1_F_FILEOVERWRITE flag is not
specified, the existence of the destination file will cause an error and the
file transfer will not take place.

The function returns TAP1_SUCCESS if the transfer has been successful or one
of the error codes:

Terminal GUI/Console — programmers manual 27

24,

v" TAPI_NOTCONN - no connection to the terminal (gte.exe).

v TAP1_BADPARAMS - bad parameters, e.g. one of the required file
names is missing.

v' TAPI1_SYSERR - a system error has occured. The fields
pFIError->lastSrvSysError and
pFIError->lastTrmSysError contain information about the type
of the error as returned by the Windows system function
GetLastError() on the server and terminal, respectively.

Description

The function allows to send to the terminal the file named pSrvFi leName and
to save it on the terminal as pTrmFi leName. The file names on the server and
terminal should be given as seen by the server and terminal system, respectively.
In case of an TAPI1_SYSERR error, functions GetLastError(),
GetLastSrvError() or GetLastTrmError () can be used to read
additional error diagnostics.

TApiRaiseFinalError

Syntax

int TApiRaiseFinalError(wchar_t *pDescription,
wchar_t *pFunction,
int ivall,
int ival2);

Parameters

v pDescription - error description as a unicode string.

v" pFunction - unicode name of the function which had an error.

v ivall, ival2 - additional diagnostics values which will be saved and
displayed with the error message.

Result

The function does not return to the parent process, thus it does not return any
value.

28

Terminal GUI/Console — programmers manual

25.

Description

The function allows notification of a terminating error. Following actions are
part of the terminating error handling:

e The error message and other error information is saved to the log file on the
server. The log file is located in the applogs subdirectory of the Terminal
server directory and is called tapplog.txt.

o If there is a connection between gte.exe and the application, the error
information is sent to gte.exe and an error message is displayed on the
terminal.

e The error message is saved to the log file on the terminal (gtelog.txt).

o A forced termination of the gte.exe process and of the application process
with the exit code larger than 0 takes place.

As seen from the description above the function concludes the execution of the
program. The control is not returned to the parent process and the function does
not return any value.

TApiRemoteFreeLibrary

Syntax
BOOL TApiRemoteFreeLibrary(HREMMODULE hRemoteModule);

Parameters

v" hRemoteModule - handle of the remote extension library obtained
from TApiRemoteLoadLibraryEx().

Result

The function returns 1 if the library has been successfully released or O
otherwise.

Description

The function allows to release (remove from the gte.exe address space) a DLL
library loaded earlier using the TApiRemoteLoadL ibrary()function. After
the library is released the RPC functions contained in the library can not longer be

Terminal GUI/Console — programmers manual 29

26.

27,

used. In case of an error additional diagnostics information can be obtained using
the function TApiGetLastTrmError().

TApiRemoteLoadLibraryEx

Syntax
HREMMODULE TApiRemotelLoadLibraryEx(WCHAR *pFileName,
DWORD dwFlags);

Parameters

v' pFileName - unicode name of the DLL remote extension library as
seen on the terminal by the gte.exe process.

v dwFlags - a parameter transferred directly to the LoadLibraryEx()
Windows function on the terminal. The value used most often is O.

Result

The function returns the handle to the remotely loaded DLL library or O in case
of an error.

Description

The function allows to load an extension library of a given name to the address
space of the gte.exe process running on the terminal. Extension libraries usually
contain user functions which can be remotely called by the application using one
of the following RPC calls: TApiAsyncRPC(), TApiSyncRPC() or
TApiSyncRPC_VSR(). If the loaded extension library will not be used any
more it can be released using the function TApiRemoteFreeLibrary(). In
case of an error additional diagnostics information can be obtained from the
TApiGetLastTrmError()function.

TApiRemotePrintFile

Syntax

int TApiRemotePrintFile(WCHAR *pFileName,
WCHAR *pPrinterName,
WCHAR *pDatatype);

30

Terminal GUI/Console — programmers manual

28.

Parameters

v' pFileName - unicode name of the file containing data to be printed.

v" pPrinterName - unicode name of the printer connected to the terminal
which is to be used for the printout. The printer name can contain the
postfix @ERATERM which will be removed before opening the printer on
the terminal. For the default terminal printer printer name L”’DEFPRN”’
can be used.

v' pDataType - file data type. At this time only L”TEXT”* format is
supported.

Result

The function returns TAP1_SUCCESS if printing was successful or one of the
following error codes:

v/ TAPI1_NOTCONN - no connection to the terminal (gte.exe).

v' TAPI1_BADPARAMS - bad parameters.

v" TAPI_SYSERR - a system error occurred. Additional information can be
obtained from the functions TApiGetLastSrvError () and
TApiGetLastTrmError().

Description

The function allows printing of the contents of a given file on a printer connected
to the terminal. The function returns after the file is sent to the printer. At this
time only L’ TEXT”” data format is supported.

TApiSendUpdates

Syntax
int TApiSendUpdates(HWND hWnd);

Parameters

v" hWnd - handle of the window which is to be updated or NULL for
updating all windows of the application.

Terminal GUI/Console — programmers manual 31

29.

Result

The function returns TAP1_SUCCESS or TAPI_NOTCONN if there is no
connection to the terminal.

Description

To optimize network transmission in the Terminal GUI environment the changes
made by the application in windows of the Windows system are sent to the
terminal with a delay. The function TApiSendUpdates() allows forced
immediate sending of changes for window hWnd or for all windows of the
application. A forced sending of the changes can be useful for instance before
calling an RPC function, which assumes that certain information has already
been displayed on the terminal window.

TApiSetDiscTmt

Syntax
DWORD TApiSetDiscTmt(DWORD timeout);

Parameters

v/ timeout - timeout time in seconds after which the application will
disconnect the client station (terminal) in case it has lost connection to the
application due to a network error or shut down. The range of the
parameter is 20-10000. The 0 value means return to the default setting,
the 65535 value switches the mechanism of active checking the
connection off.

Result

The function returns the previous value of the parameter or O for an incorrect
value of the timeout parameter.

Description

The function allows to change the maximum time after which the application
will disconnect a client station (terminal) in case it has lost connection to the
application due to a network error or shut down. The disconnect can occur earlier
if a mechanism of the TCP/IP protocol signals the loss of connection.

32

Terminal GUI/Console — programmers manual

30. TAp

Syntax

ISyncRPC

int TApiSyncRPC(HREMMODULE hRemoteModule,

WCHAR *pFunName,

void *pCallData,

int callDataSize,

void *pResData,

int *pMaxResDataSize);

Parameters

v

v
v

Result

hRemoteModule - handle of a remote DLL library obtained from the
function TApiRemoteLoadLibraryEx().

pFunName — unicode name of a DLL library function that is to be called.
pCal IData - pointer to buffer containing data to be transferred to the
called function or NULL.

cal IDataSize - data size (in bytes) pointed by pCal IData or O if
pCallData == NULL.

pResData — pointer to buffer in which the results of the function will be
placed or NULL if no result is expected.

pMaxResDataSize - pointer to an Int type variable which contains
the size of the buffer pointed by pResData. This size determines the
maximum number of bytes of the expected result. The parameter should
be NULL if no result is expected. After the function call, the variable
*pMaxResDataSize will contain the actual number of bytes copied to
pResData buffer.

The function returns TAP1_SUCCESS for success or one of the error codes:

v" TAP1_NOTCONN - no network connection to the terminal.

v' TAP1_BADPARAMS — bad call parameters.

v" TAP1_RESULTTOLARGE - the result buffer is too small.

v" TAPI_NOFUNCT ION - the called function can not be found in module

hRemoteModule.

Terminal GUI/Console — programmers manual 33

31.

Description

The function allows a synchronous call of a users function residing on the
terminal and attached to gte.exe as a DLL library. Before a call the library
containing the function has to be loaded to the gte.exe address space using the
TApiRemoteLoadLibraryEx()function. In a synchronous call the control
is transferred to the RPC function and the parent process awaits its result. The
result is returned in the pResData buffer, its size is limited in advance by the
buffer size. The functions called using TAp1SyncRPC() have to be properly
exported from a DLL library and declared with a call type cdecl. The returned
type and the types of the parameters have to be consistent with the
SYNCRPCFUN type defined in gtrmapi.h. The header of the function not
including the export directive and the call convention should be as follows:
void MySyncRPCFun(void *pCallData,

int callDataSize,

void *pResData,
int *pMaxResDataSize);

Before returning to the parent process the RPC function should copy up to
*pMaxResDataSi ze bytes of the result to pResData buffer and place the
actual number of bytes copied to the buffer to the *pMaxResDataSize
variable. The contents of the buffer and the information about its size is
transferred back to the calling function.

An example of a synchronously called users function is the function
UserSyncRPCMsgBoxCal Iback() from the gteext.dll library

An example of its call can be found in the program testcapi.exe.

TApiSyncRPC_VSR

Syntax

int TApiSyncRPC_VSR(HREMMODULE hRemoteModule,
WCHAR *pFunName,
void *pCallData,
int callDataSize,
void **ppResData,
int *pResDataSize);

34

Terminal GUI/Console — programmers manual

Parameters

v" hRemoteModule — handle of a remote DLL library obtained from the
function TApiRemoteLoadLibraryEx().

v pFunName - unicode name of a DLL library function that is to be called.

v' pCal IData - pointer to the buffer containing data to be transferred to
the called function or NULL.

v' cal IDataSize - data size (in bytes) pointed by pCal IData or O if
pCallData == NULL.

v ppResData - pointer to a void™* type variable, the pointer to the
buffer with the results of the RPC function will be placed in, or NULL if
the function will return no result.

v' pResDataSize - pointer to an int type variable initialized to 0. After
the function returns, this variable will contain the size of the result buffer
pointed by *ppResData.

Result

The function returns TAPI_SUCCESS for success or one of the error codes:

v" TAP1_NOTCONN - no network connection to the terminal.

v' TAPI1_BADPARAMS - bad call parameters.

v" TAP1_NOFUNCTION - the called function can not be found in module
hRemoteModule.

Description

The function allows a synchronous call of a user’s function residing on the
terminal and appended to gte.exe as a DLL library. Before a call, the library
containing the function has to be loaded to the gte.exe address space using the
TApiRemoteLoadLibraryEx()function. In case of a synchronous call the
control is transferred to the RPC function and the parent process awaits its result.
The result is returned in the *ppResData buffer allocated by the function
TApiSyncRPC_VSR(). The difference between the functions
TApiSyncRPC_VSR(Q) and TApiSyncRPC() is that the first one allows the
return from the RPC and acceptance by the caller of a result of any size, while
the second one limits the result size in advance. Whenever the size of the result

Terminal GUI/Console — programmers manual 35

of an RPC function is known, the TApi SyncRPC()function call should be
used.

VERY IMPORTANT!!!

Since the result buffer is dynamically allocated by the
TApiSyncRPC_VSR()function, it is necessary to release it after use. The
application must release the result buffer using the function
TApiMemGlobalFree(). The use of another function will cause a memory
protection error (GPF) or other problems.
The functions called using TApi SyncRPC_VSR() have to be properly
exported from a DLL library and declared with a call type cdecl. The returned
type and the types of the parameters have to be consistent with the
SYNCRPC_VSRFUN type defined in gtrmapi.h. The header of the function not
including the export directive and the call convention should be as follows:
void MySyncRPCFun(void *pCallData,

int callDataSize,

void **ppResData,
int *pResDataSize);

Before returning to the parent process, the RPC function running on the terminal
(e.g. MySyncRPCFun) should allocate an appropriate memory buffer using
GteApiMemGlobalAlloc() and copy to it the result of the function call.
The pointer to the result buffer should be placed in *ppResData, and the
actual size of the result should be saved as *pResDataSize. The contents of
the buffer and the information about its size will be transferred back to the caller.
The buffer allocated in the RPC function will be released by gte.exe. The
described sequence should be as follows:

// placing result in buffer pointed by *ppResData
*ppResData = GteApiMemGlobalAlloc(RESULT_SIZE);
iT(*ppResData)

*pResDataSize

}

else

RESULT_SIZE; // returning result size

*pResDataSize = 0; // no result

}

36

Terminal GUI/Console — programmers manual

32.

The example of a synchronously called user’s function with a variable result size
is the function UserSyncRPCRandomRepl icateCal Iback() from the
gteext.dll library. The example of its call can be found in the program
testcapi.exe.

TApiTerminalMode

Syntax
int TApiTerminalMode(void);

Result

The function returns 1 if the application is executed in the terminal mode or O
otherwise.

Description

The function can be used to check, if the application is executed in the terminal
mode. It can be called before the initialization of the application interface with
the TApi Initial ize()function. This makes it easy to develop applications
which will take advantage of the Terminal extensions in the terminal mode, but
run also in the non-terminal mode. The TApi TerminalMode () function will
very often be the first API function called by an application. If the application is
executed in the terminal mode, the application interface will be then initialized
by calling TApiInitialize() function.

Terminal GUI/Console — programmers manual 37

V. gte.exe extension interface functions
(GteApi)

The available gte.exe extension interface functions are described below in alphabetical
order. The names of the functions start with the GteApi... prefix. The functions are
contained in the gteapi.dll library. An import library gteapi.lib is available. Function
prototypes and all required types and constants are defined in the gteapi.h and
gtrmapi.h header files. All text parameters are passed to/from interface functions as
UNICODE. The gte.exe extension interface functions are to be used from the level of
DLL libraries that contain RPC functions and extend the functionalities of the
standard gte.exe. The extension libraries can (but do not have to) use the extension
interface functions. The interface has to be initialized before its functions are used by
calling GteApi Initialize(). Following functions are exceptions and can be
used before the interface is initialized:

v GteApilnitialized()
v GteApiGetApiVersion()

33. GteApiCheckConnected

Syntax

int GteApiCheckConnected(void);

Result

The function returns 1 if there is a connection between gte.exe and the
application or O if there is no connection.

Description

The function verifies if there is a connection between gte.exe to which the
calling DLL extension library is attached, and the application which called the
RPC function.

38 Terminal GUI/Console — programmers manual

34.

35.

GteApiGetApiVersion

Syntax
int GteApiGetApiVersion(GTRMVERSION *pApiVer);

Parameters
v pApiVer - pointer to GTRMVERSION structure which will receive the
result.
Result
The function fills the GTRMVERS ION structure and returns O.

Description

The function returns in the GTRMVERSION structure information about the
extension interface version, that is the gteapi.dll library. The version should
agree within the first four digits with the version of gte.exe. If this is not the case,
the API initialization using GteApi Initialize () will fail.

GteApiGetGteVersion

Syntax
int GteApiGetGteVersion(GTRMVERSION *pCallerVer,

GTRMVERSION *pGteVer);
Parameters

v' pCallerVer -reserved —should always be NULL.
v' pGteVer - pointer to GTRMVERSION structure which will receive the
result.
Result

The function returns TAP1_SUCCESS.

Description

The function allows reading of the version of the gte.exe to which the extension
library is attached.

Terminal GUI/Console — programmers manual 39

36. GteApiGetSrvinfo

Syntax
int GteApiGetSrvinfo(GTEAPI_TRMSVINFO *pSrvinfo);

Parameters

v" pSrvinfo - pointer to GTEAP1_TRMSVINFO structure which will
receive the result.

Result
The function returns TAP1_SUCCESS.

Description

The function allows reading of the version of the operating system on the
application server, the version of the Terminal server and the application start
date.

37. GteApiHwndToNetld

Syntax
int GteApiHwndToNetld(HWND hWnd);

Parameters
v" hWnd - handle of one of the gte.exe windows corresponding to the
application windows.
Result

A network identifier of a window or O.

Description

The function allows converting of a gte.exe window handle which corresponds to
one of the main windows of the application into its network identifier. The
network identifier can be returned from the RPC function to the application and
converted there into the corresponding window of the server system using the

40 Terminal GUI/Console — programmers manual

38.

39.

TApiNetldToHwnd()function. The function returns O if hWnd is not a
handle of a window created by gte.exe.

GteApilnitialize

Syntax
int GteApilnitialize(void);

Result

The function returns TAP1_SUCCESS or one of the following error codes:

v" TAPI_NOGTEEXE - gte.exe not found — most probably the gteapi.dll
library has been loaded to another process.

v' TAP1_BADAPIVERSION - the first four digits of the gte.exe extension
interface (gteapi.dll) version do not correspond to the first four digits of
gte.exe version. Verify if correct DLL libraries have been copied.

v" TAPI_CANTIMPORTFUN - the address of one of the API functions
within gte.exe can not be resolved.

Description

The function initializes internal structures of the gte.exe extension interface
contained in the gteapi.dll library. During the initialization the gteapi.dll
functions are linked with the auxiliary functions contained in gte.exe. The
interface has to be initialized before the first call to any other API function. The
two following functions are exceptions which can be called before API
initialization:

v GteApilnitialized()

v' GteApiGetApiVersion()

GteApilnitialized

Syntax
int GteApilnitialized(void);

Terminal GUI/Console — programmers manual 41

40.

41.

Result

The function returns 1 if the gte.exe extension interface has been already
correctly initialized using GteApi Initialize() or O otherwise.

Description

The function can be used anytime within an RPC function to check if the
extension interface has been initialized and if API functions can be used.

GteApiMemGlobalAlloc

Syntax
void *GteApiMemGlobalAlloc(unsigned size);

Parameters

v' size -the size of the memory block that is to be allocated.

Result

The function returns the pointer to the allocated memory block of the size
defined by size parameter of NULL if the memory can not be allocated.

Description

The function allows dynamical memory allocation for an RPC function. The
allocated memory block is zero-initialized. The memory allocated using
GteApiMemGlobalAlloc()has to be released using the
GteApiMemGlobalFree()function. If the RPC function is called by
TApiSyncRPC_VSR() and returns a non-zero result, the described function
must be used to allocate the memory block to store the result.

GteApiMemGlobalFree

Syntax
void GteApiMemGlobalFree(void *ptr);

42

Terminal GUI/Console — programmers manual

42.

Parameters

v' ptr - pointer to the memory block allocated using
GteApiMemGlobalAlloc().

Description

The function releases memory dynamically allocated by
GteApiMemGlobalAlloc().

GteApiNetldToHwnd

Syntax
HWND GteApiNetldToHwnd(WNDNETID netid);

Parameters
v" netid - network identifier of a window obtained from
TApiHwndToNetld(), TApiHwndToRemotedNetld() or
GteApiHwndToNetld()functions.
Result

Handle of a Windows window created by gte.exe or NULL.

Description

The function allows converting the network identifier of a window to the

corresponding window (of the Windows system) created by gte.exe. The network
identifier of a window will be in most cases transferred to the RPC function from

an application. The application function can convert on the server the actual
handle of the Windows system window into the network identifier using

TApiHwndToNetld(Qor TApiHwndToRemotedNetld() and transfer it to

the RPC function. The RPC function can find the terminal window which

corresponds to the server window by converting the network identifier into the
terminal window handle using the described function. The function returns NULL

if the window described by the network identifier does not exist anymore.

Terminal GUI/Console — programmers manual

43. GteApiRaiseFinalError

Syntax

int GteApiRaiseFinalError(wchar_t *pDescription,
wchar_t *pFunction,
int ivall,
int ival2);

Parameters

v' pDescription - error description as a unicode string.

v" pFunction - unicode name of the function which had an error.

v ivall, ival2 - additional diagnostics values which will be saved and
displayed with the error message.

Result

The function does not return to the caller, thus it does not return any value.

Description

The function allows rising of the termination error. Following actions are part of
the error handling:

e The error message and other error information is saved to the log file on the
terminal. The log file is located in the gte.exe directory and is called
gtelog.txt.

o If there is a connection between gte.exe and the application, the error *"GTE
shutdown notification received - quiting" is written to the
application log (gapplog.txt in applogs subdirectory of the Terminal server)
and the application process is terminated.

o A forced termination of the gte.exe process with an exit code larger than 0
takes place.

As seen from the description above the function concludes the execution of the
program. The control is not returned to the caller and the function does not return
any value.

44

Terminal GUI/Console — programmers manual

44. GteApiSetConsoleEventMask

Syntax
unsigned GteApiSetConsoleEventMask(unsigned newMask);

Parameters

v" newMask - a new mask which defines the handling of console events.
The mask can contain KEY_EVENT and MOUSE_EVENT (wincon.h) bits
in any combination.

Result

The previous value of the mask defining the handling of console events.

Description

The use of the function is appropriate for applications executed in the Windows
console mode only. The function allows selective blocking and unblocking of
some console events. By default the console handles both keyboard events
(KEY_EVENT) and mouse events (MOUSE_EVENT). By sending a mask one can
set the handling of a given event type to either handling on (bit on) or handling
blocked (bit zeroed). Handled events are transferred to the application. Blocked
events are ignored and thus not sent to application.

Terminal GUI/Console — programmers manual 45

V. Application interface xHarbour functions
(THbAPpI)

The functions available directly to xHarbour applications are described below. The
names of the functions start with the prefix THbApi... or Trm... . Compiled functions
are located in the ghrbapi.lib library which has to be attached when linking
application. Described first are the new functions (THbAp) followed by Trm...
functions. The Trm... functions are included to assure interface compatibility with
earlier versions of the OTC Terminal software designed for xHarbour/Clipper.

Before using the interface functions the interface must be initialized using

THbApi Initialize(). The function THbApiTerminalMode() is an
exception and can be used before interface initialization. After finishing the use of the
interface the function THbApiShutdown()must be called.

45. THbApiGetClientDir

Syntax
THbApiGetClientDir(<nDirectoryType>) -> cResult

Result

The function returns a directory (path) on the terminal or an empty string in case
of an error.

Description

The function allows to obtain a directory name on the terminal defined by the
nDirectoryType parameter. At this time the following directory types are
supported:

e TAPI_DIRTYPE_GTE (1) -the gte.exe program directory.

46 Terminal GUI/Console — programmers manual

46. THbApilnitialize

Syntax

THbApiInitialize([<IInitRPC>] [,<cHarbourDIlIPath>
[,<cExtentionDIlIPath>]])-> nResult

Result
The function returns TAP1_SUCCESS or one of the error codes:

v' TAPI_NOCNETLIB - the cnetlib.dll library was not found — most
probably the application process has not been launched in the terminal
mode.

v" TAP1_BADPARAMS - bad parameters were given.

v' TAP1_BADAPIVERSION - the first four digits of the application
interface version (gtrmapi.dll) do not correspond to the first four digits of
the Terminal software version (cnetlib.dll). Please verify if correct DLL
libraries have been copied.

v' TAPI_CANTIMPORTFUN - the address of one the the API functions
from within the cnetlib.dll library could not be resolved.

v' TAPI_CNTLOAD_GTEHRBDLL - unable to load gtehrb.dll on the
terminal side.

v TAPI_CNTLOAD_HARBOURDLL - unable to load harbour.dll on the
terminal side.

v' TAPI_BADHARBOURDLLVER - unable to load harbour.dll on the
terminal side due to uncombatible xHarbour versions of harbour.dll and
gtehrb.dll.

Description

The function initializes internal structures of the xHarbour application interface
contained in ghrbapi.lib. If the I Ini tRPC parameter is . T ., the RPC
subsystem which allows calls to remote xHarbour procedures is also initialized.
Following actions are part of the initialization:

o The initialization of the base application interface (gtrmapi.dll) by calling
TApilnitialize().
e Actions below are executed only if HINnitRPCis .T.

Terminal GUI/Console — programmers manual 47

47.

48.

o Loading of the remote extension library: gtehrb.dll.

e Loading of the xHarbour remote library: harbour.dll or
cHarbourDI IPath if specified.

o Loading of the remote extension library: gtehrbext.dll or
cExtentionDI IPath if specified.

A missing extension library is not considered to be an error. The
THbApIRPCExtInitialized() function can be used to check if the
extension library has been loaded.

THDbApilnitialized

Syntax
THbApiInitialized() -> IResult

Result
The function returns. T . if the xHarbour application interface has been already
initialized by calling THbApi Initialize()or.F. otherwise.

Description

The function can be used anytime within an application to check if the
application interface has been initialized and if API functions can be used.

THbAPpIRPClnitialized

Syntax

THbApiRPCInitialized() -> IResult

Result

The function returns. T . if the xHarbour application interface has been already
initialized with the RPC call option or . F . otherwise.

Description

The function can be used anytime within an application to check if the
application interface has been initialized and if RPC function calls can be made.

48

Terminal GUI/Console — programmers manual

49.

50.

The function returns . T. if the interface has been initialized and the harbour.dll
library has been loaded on the terminal with the RPC call option.

THbApIRPCEXxtInitialized

Syntax
THbApiRPCExtInitialized() -> IResult

Result

The function returns . T . if the xHarbour application interface has been already
initialized with the RPC call option and the extension library gtehrbext.dll has
been loaded on the terminal side or . F. otherwise.

Description

The function can be used anytime within an application to check if the
application interface has been initialized and if RPC calls and users extensions
can be used. The function returns . T . if the interface has been initialized and the
harbour.dll library and the gtehrbext.dll users extension library have been loaded
on the terminal side.

THbApiShutdown

Syntax

THbApiShutdown() -> nResult

Result

The function returns TAP1_SUCCESS or one of the error codes of the
TApiSyncRPC()function.

Description

The function allows to release resources occupied by the xHarbour application
interface when it is not needed anymore. Depending on the initialization option
following actions take place:

o Release of the xHarbour remote extension library: gtehrbext.dll.

Terminal GUI/Console — programmers manual 49

o Release of the xHarbour remote library: harbour.dll.
o Release of the remote extension library: gtehrb.dll.

ATTENTION!

ol.

52,

The application interface functions can still be used from the C/C++ language
level using TApi... functions from the gtrmapi.dll library.

THbApiTerminalMode

Syntax
THbApiTerminalMode() -> IResult

Result

The function returns . T . if the application is executed in the terminal mode or
-F. otherwise.

Description

The function can be used to check if the application is executed in the terminal
mode. It can be called before the initialization of the xHarbour application
interface with the THbApi Initial ize()function. This makes it easy to
develop applications which will take advantage of the Terminal extensions in the
terminal mode but run also in the non-terminal mode. The
THbApiTerminalMode ()function will very often be the first API function
called by the application. If the application is executed in the terminal mode, the
application interface will be then initialized by calling the

THbApi Initialize() function.

TrmAppOS

Available in the 32-bit version only (Harbour/xHarbour).

Syntax
TrmAppOS() -> nAppSystemiD

50

Terminal GUI/Console — programmers manual

53.

54.

Description
The function returns the code of the operating system on which the application is
executed.
Returned codes:

2 —Windows NT

6 — Windows 2000

7 — Windows XP

8 — Windows 2003

32 — Linux

See also: TrmTe0OS ()

TrmDiscTm

Syntax
TrmDiscTm(<nDisconnectTimeout>)

Description

The function allows to set the maximum period of time after which the
application will disconnect a client station (terminal), in case it has lost
connection to the application due to a network error or shut down. The
nDisconnectTimeout parameter defines the time in seconds. It can adopt
values from 20 to 10000.

The function with the parameter 0

TrmDiscTm(0)

restores the default disconnect time, while

TrmDiscTm(65535)

switches off the disconnect mechanism altogether.

TrmFIPrint

Syntax
TrmFIPrint(<cFileToPrint>, <nLPTnumber>) -> nResult

Terminal GUI/Console — programmers manual 51

Description

The function prints out a file seen by the xHarbour application executed on the
server as cFileToPrint on a printer attached to the terminal station. The
parameter nNLPTNumber defines the LPT port number (1, 2, or 3) on the server.
Depending on the active redirect the file will be printed on the corresponding
LPT port of the terminal station.

The function returns O in case of success. Otherwise it returns an error code
(<1000) identical with the code returned by the FERROR() function. If the error
occurred on the terminal while printing, function returns the number of correctly
printed characters increased by 1000.

Example

Res = TrmFIPrint("myfile.txt”, 1)
IF res ==
? “Printed OK.”
ELSIF res < 1000
? “File access error (invalid file name?)”
ELSE
? “Error printing file, printed“, res-1000,“bytes”
ENDIF

55. TrmGetFile
Syntax
TrmGetFile(<cTermFileName>, <cNTFileName>)-> nResult
Description
The function transfers the file seen by the te.exe application, executed on the
terminal, as cTermFi leName onto the application server and saves it as
cNTFi leName. The function returns O in case of success. Otherwise it returns
an error code identical with code returned by the FERROR() function. If the
error occurred on the terminal, the error code is increased by 1000.

52 Terminal GUI/Console — programmers manual

56.

57,

58.

TrmGetPrty

Syntax
TrmGetPrty() -> nCurrentPriority

Description

The function returns a value which corresponds to the system priority of the
application executed on the Windows server. Possible nCurrentPriority
values are:

0 — low priority

1 — normal priority (default value)

2 — high priority

3 — highest priority

TrmlsTs

Syntax
TrmIsTs() -> IResult

Description

The mechanism of terminal transactions is not implemented in the Terminal GUI
software. This function has been preserved to ensure backward compatibility of
the existing code. Function returns . T. after call to if TrmTsBegin() and
-F. after call to TrmTsEnd() function.

TrmPrCancl

Syntax
TrmPrCancl(<nPrinterHandle>) -> IResult

Description

The function cancels printing of a file sent to the printer identified by
nPrinterHandle using the TrmPrSubmt() function. The function returns
-T. if printing has been cancelled or .F. otherwise.

Terminal GUI/Console — programmers manual 53

59. TrmPrClose
Syntax
TrmPrClose(<nPrinterHandle>)
Description
The function closes the printer session identified by nPrinterHandle. The
closing of a session does not remove any data sent earlier using the
TrmPrSubmt() function from the printer queue.

60. TrmPrFile
Syntax
TrmPrFile(<cPrinterName>, <cFileName>) -> IResult
Description
The function prints the cFi IeName file on the cPrinterName printer. The
name of the printer should be identical with the name returned by the
TrmPrList() function. The function returns . T. if the task has been
successfully completed or . F. otherwise. The function does not require an open
printer session.

61. TrmPrList
Syntax
TrmPrList() -> aPrnTable
Description
The function returns a table containing names and descriptions of all printers
defined in the Windows NT/200x/XP/Vista system or NIL if there are no
printers defined. The length of the returned table equals to the number of printers
in the system. For every printer two string values are returned:

v" name - aPrnTable[printerNumber][1].
v" description - aPrnTable[printerNumber][2].
54 Terminal GUI/Console — programmers manual

62.

63.

The name of the printer can be used when calling the TrmPrOpen() or
TrmPrFile()function.

Example

pTab = TrmPrList()
IF pTab == NIL
? ”No printer(s) defined”
QUIT
ENDIF
FOR pn = 1 TO LEN(pTab)
? ”Printer name: , pTab[pn][1]
? ”Printer description: 7, pTab[pn][2]
NEXT

The sample fragment of the code above prints out names and descriptions of all
printers defined in the Windows NT system.

TrmPrOpen

Syntax
TrmPrOpen(<cPrinterName>) -> nPrinterHandle

Description

The function opens a printer session on the cPrinterName printer and returns
its handle or O if the session could not be opened. The returned session handle
should be passed to all functions that require it. The name of the printer should
be as returned by the TrmPrList function.

TrmPrPut

Syntax

TrmPrPut(<nPrinterHandle>,
<cStringToPrint>,
<nStringLength>) -> IResult

Terminal GUI/Console — programmers manual 55

Description

The function sends the number of bytes defined by nStringLength from the
string cStringToPrint to the session identified by nPrinterHandle.
The function returns . T . if sending of the data was successful or .F. otherwise.

64. TrmPrPutFI
Syntax
TrmPrPutFI(<nPrinterHandle>, <cFileName>) -> IResult
Description
The functions sends the contents of the file defined by cFi leName to the
session nPrinterHandle. The function returns . T . if sending of the data
was successful or _F. otherwise.
65. TrmPrSubmt
Syntax
TrmPrSubmt(<nPrinterHandle>) -> IResult
Description
The function sends data prepared earlier with the TrmPrPut() and
TrmPrPutF 1 () functions to a printer queue associated with the
nPrinterHandle session. The function returns . T . if sending of the data
was successful or _F. otherwise.
66. TrmPutFile
Syntax
TrmPutFile(<cNTFileName>, <cTermFileName>) -> nResult
Description
The function sends a file seen by the xHarbour application executed on the
Windows NT/200x/XP/Vista server as cNTF i IeName to the terminal and saves
56 Terminal GUI/Console — programmers manual

67.

68.

it as file cTermFi leName . The function returns O in case of success.
Otherwise it returns an error code identical with code returned by the
FERROR() function. If the error occurred on the terminal, the error code is
increased by 1000

TrmSetPrty

Syntax
TrmSetPrty(nNewPriority)

Description

The function allows to change the execution priority of a terminal application on
a Windows NT server. Following new nNewPriority settings are possible:

0 — low priority

1 — normal priority (default value)

2 — high priority

3 — highest priority
In case of a large number of active terminal sessions the TrmSetPrty() can
be used to decrease the run time priority of an application for long and CPU
intensive tasks (e.g. creating of reports and summaries). Decreasing the
execution priority of parts of an application allows to maintain efficient
execution of interactive processes even for a very large number of terminal
sessions running.

TrmSvName

Syntax
TrmSvName() -> nServerName

Terminal GUI/Console — programmers manual 57

69.

70.

Description

The function returns the name of Windows NT server on which the application is
running or NIL.

TrmTeOS

Syntax
TrmTe0S() -> nTeSystemlD

Description

The function returns the code of the operating system on which the gte.exe
(terminal client) is executed.
Operating system codes returned:

1-DOS

2 —Windows NT

3 — Windows 95

4 — Windows 98

5 — Windows Me

6 — Windows 2000

7 — Windows XP

8 — Windows 2003

32 - Linux
See also: TrmAppOS()

TrmTrmRPC

Syntax
TrmTrmRPC(<cTermFunName>, ...) -> Result

Description

The function called by an application will execute on the terminal the extension
function cTermFunName contained in the DLL extension library. Parameters
specified after the function name are passed on to the remote function. The
function returns the value returned by the remotely executed function. Remote
functions can not receive nor return any array type arguments or arguments

58

Terminal GUI/Console — programmers manual

passed by reference (@). Before calling this function it is necessary to initialize
the interface using THbApi Initialize()in the RPC mode, thus specifying
the .T. parameter.

Example

On the application side:
? TrmTrmRPC(”FUN1”, 1, 2)

On the terminal side:

FUNCTION FUN1
PARAMETERS P1, P2
RETURN P1+P2

Execution of this program will display the result value 3, which would be
calculated on the terminal.

ATTENTION!

71.

72.

If the TrmTrmRPC() function is called after the connection between the
terminal and the application has been lost, NI1L value will be returned.

TrmTSBegin

Syntax
TrmTSBegin()

Description

The mechanism of terminal transactions is not implemented in the Terminal GUI
software. This function has been preserved to ensure backward compatibility of
the existing code. After calling TrmTsBegin(), TrmlsTs() function will
return _T.

TrmTSENnd

Syntax
TrmTSENd ()

Terminal GUI/Console — programmers manual 59

Description

The mechanism of terminal transactions is not implemented in the Terminal GUI
software. The function has been preserved to ensure backward compatibility of
the existing code. After calling TrmTsEnd (), TrmIsTs() function will return
-F.

73. TrmUser
Syntax
TrmUser() -> cTermUserName
Description
The function returns the user name of the terminal user (obtained while
connecting to the Terminal server).
74. TrmUpdate
Syntax
TrmUpdate()
Description
The function forces immediate sending to the terminal of all display changes
buffered by the application.
60 Terminal GUI/Console — programmers manual

VI. Migration of xHarbour applications to
Terminal GUI environment

No migration is necessary for applications that work with the older, specialized for
xHarbour/Clipper, version of OTC Terminal, which will be used in text mode only.
Those applications can be launched using te32.exe after a standard adjustment
procedure which links them to new versions of Terminal libraries.

The migration procedure described in this section refers to such modifications of an
application that will make it work in the GUI environment. It is possible to create a
single EXE file which will work both in the terminal environment and as a standalone
windows application.

The te32.exe migration

If the migrating application uses te32.exe with users extensions attached (the RPC
functions), it is necessary to transfer them over to a DLL library which can be loaded
using gte.exe. An example of such a library is gtehrbext.dll. This library can be easily
modified to include functions required for the migration. In order to do that one has to:

1. Add to the mkhbextdll.bat script the compilation of all PRG files containing the
required functions.

2. At the end of gtehrbext.c, add the command to include *.c files created by
compilation of the PRG files mentioned in 1.

3. Create a DLL library containing the required functions by executing the
mkhbextdll.bat script.
To facilitate the migration of applications with extended te.exe and te32.exe
functionalities, the gtehrblib.lib library containing xHarbour functions
traditionally available in te/te32.exe can be attached to the gtehrbext.dll extension
library. The xHarbour functions traditionally available in the te/te32.exe
environement are the following: TrmCl1tVMaj (), TrmCItVMin(),
TrmCItVSubQ), TrmCItVBfx(), TrmSrvSys(), TrmSrvVMaj),
TrmSrvwMinQ), TrmTSVMaj), TrmTSVMiIn(), TrmTSVSub(),

Terminal GUI/Console — programmers manual 61

TrmTSVBTX(), TrmSrvYear (), TrmSrvMnth(), TrmSrvDay(),
TrmRevBts (), TrmPrList(), TrmPrOpen(), TrmPrClose(),
TrmPrPut(), TrmPrPutFI (), TrmPrFile(), TrmPrSubmt(),
TrmPrCancl (), TrmSvName(), TrmTe0S(), TrmApp0S),
TrmRKBOFF(), TrmRKBON().

4. Copy the created library to the gte.exe directory.

The procedure described above is not required if the application uses a standard
te32.exe version.

The application migration

If the application does not use any functions of the Terminal (Trm...) package, it is
sufficient to exclude from the application linking process any libraries related to the
Terminal. The created application can be launched as a standalone process or in the
terminal mode using gte.exe.

If the application uses functions of the Terminal package, following steps have to be
followed:

1. Remove from the application linking process any old Terminal libraries.

2. Add to the application linking process the ghrbapi.lib and gtrmapi.lib libraries.
3. Place the following call at the beginning of the application (before any terminal
function call):

THbApiInitialize(.T.)
(see the description of the THbApi Initial ize()function for details).

4. Place the following call before the end of the application:
THbApiShutdown()
(see the description of the THbAp 1 Shutdown () function for details).

5. Create the application EXE file.

An application created in this way can be launched in the terminal mode using gte.exe.
If the application is to be used as a standalone process as well, it is worthwhile to
create a single EXE file which can be executed both in the terminal and standalone
mode. For that, one should use the THbApiTerminalMode () function which

62 Terminal GUI/Console — programmers manual

checks if the application is executed in the terminal mode. All subsequent calls to
Terminal functions should be made only if the application works in the terminal mode.

Terminal GUI/Console — programmers manual 63

